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A B S T R A C T   

Both natural and anthropogenic variables affect soil C distribution and its pool, however studies about anthro-
pogenic influence on soil C distribution are very limited in the literature. This study investigated anthropogenic 
effects on soil organic carbon (SOC) changes in the cultivated lands of Northeast China. A total of 196 topsoil 
samples (0–30 cm) were collected, and analyzed for SOC content, and 12 environmental variables (natural and 
anthropogenic) were selected as SOC predictors. Natural factors included elevation, slope gradient, slope aspect 
(SA), topographic wetness index (TWI), mean annual temperature, mean annual precipitation, and normalized 
difference vegetation index, while population (POP), gross domestic product (GDP), distance to the socioeco-
nomic center, distance to roads, and reclamation period (PER) represented anthropogenic variables. Three 
different boosted-regression trees models with different combination of SOC predictors were constructed, and the 
model performance was evaluated with 10-fold cross-validation. We found that the model that included all 
predictors had the best performance, followed by the model with topography and climate variables, and the 
model with only anthropogenic variables. However, adding the anthropogenic variables in the model greatly 
improved its performance. Results showed that PER, POP and GDP were the key environmental variables 
affecting SOC content in the topsoil agroecosystems in Northeast China. This study suggests that anthropogenic 
variables should be selected as the main environmental variable in predicting of SOC content in agroecosystem 
with a higher human influence. We believe that the accurate prediction and mapping of SOC content in the 
topsoil agroecosystem will help formulate farmland soil management policies and promote soil carbon 
sequestration.   

1. Introduction 

Land use change and agricultural reclamation have altered carbon 
balance between soil and the atmosphere leading to more carbon di-
oxide emission into the atmosphere. Thus, an accurate estimation of SOC 
content is of great significance for regional as well as global ecosystem 
carbon balance. The digital soil mapping (DSM) models or algorithms 
used to predict SOC distribution, regression models have been widely 
used but use of advanced data mining or machine learning techniques 
has been gaining popularity quite recently (Minasny et al, 2013, 

Lamichhane et al, 2019). 
There are many factors affecting the content and distribution of SOC 

in agroecosystems, and they include temperature, precipitation, land use 
and land cover types, and topography, among others (Minasny et al, 
2013, Lamichhane et al, 2019, Adhikari et al, 2014). In recent years, 
human-induced factors or anthropogenic factors have also been recog-
nized as important factors of SOC changes (Sanderman et al., 2017, Seto 
et al, 2012, Wang et al., 2020a). With rapid growth in population and 
economic development, the land use pattern has changed exponentially 
leading to great changes in SOC content and its distribution (Wang et al., 
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2016; Sanderman et al., 2017). Most of the previous SOC modeling 
studies focused on quantifying the effects of natural geographic envi-
ronment change, land use and land cover, and farm management on SOC 
changes (Kumar et al., 2012; Conforti et al., 2016; Wang et al., 2019) 
However, there is not much research on the effect of anthropogenic 
factors such as population growth, and socio-economic development on 
SOC status changes. Wang et al (2020) identified population, gross do-
mestic product, distance to the socio-economic center, and distance to 
the roads as main variables affecting the spatial variation of SOC in 
agroecosystems. In a separate study, Wang et al. (2019) made a strong 
recommendation to include cultivation history as an indicator of SOC 
changes in agroecosystems with a long cultivation history. A field study 
in the US also reported a positive influence of intensive farming on SOC 
levels (Adhikari and Hartemink, 2017). 

The main aim of this study was to assess anthropogenic influence on 
SOC distribution in montane agroecosystems in Northeast China. Spe-
cific objectives included to: (1) identify potential anthropogenic vari-
ables influencing SOC distribution; (2) predict and map the SOC content 
with associated uncertainty; and (3) evaluate the predictive perfor-
mance and potential model application. 

2. Materials and methods 

2.1. Study area 

The study was conducted in the cultivated lands of Northeast Plain 
located in the middle of Northeastern China that includes Heilongjiang, 
Jilin and Liaoning provinces, and it covers an area of 787,300 km2. The 
eastern, western and northern parts of the study area are surrounded by 
Changbai Mountain, Greater Khingan Range, and Xiaoxing’an Moun-
tains. The terrain is high on these three sides with a low and open-wide 
plain facing south in the center. The altitude of the study area ranges 
from 0 to 2665 m above sea level, with an average altitude about 200 m 
(Fig. 1). 

The study area consists of three major plains, namely, Songnen Plain, 

Liaohe Plain and Sanjiang Plain with a large area under cultivation 
(217,000 km2; 20% of China s total cultivated land). The Northeast Plain 
has a long (>300 yrs) history of farming civilization and is the main 
farming area in northeastern China with frequent and intense human 
influence. Therefore, the Northeast Plain has been an ideal area to study 
anthropogenic influence on SOC distribution in agricultural ecosystems. 
Moreover, the study area is an important national grain base of China, 
and the main crops include rice, corn, soybean, potato, beet, sorghum, 
and temperate fruits and vegetable. The region has a temperate 
monsoon climate with four distinct seasons (Spring, Summer, Autumn, 
Winter). The annual precipitation increases from northwest to south-
east, and gradually transit from semi-arid area, semi-humid to humid 
area. Mean annual precipitation (MAP) ranges from 350 mm to 1100 
mm, mainly from July to August. Mean annual temperature (MAT) is 
between − 4℃ and 11℃. According to the World Reference Base for Soil 
Resources (IUSS Working Group, 2006), the dominant soil types include 
Cambisols covering 46% of area Fluvisols (21% of area), and the rest are 
Anthrosols, Phaeozems, Gleysols, Histosols, and Andosols. 

2.2. Sampling strategy and SOC determination 

Due to the large area studied, intensive soil sampling was unrealistic. 
In order to accurately reflect spatial characteristics of SOC content of 
this typical agroecosystem, we used a purposive sampling strategy (Zhu 
et al., 2008) following a stratified simple random sampling principle, 
and identified 196 sample locations covering the entire study area. We 
first grouped four environmental variables namely, soil type, elevation, 
temperature, and precipitation into more homogenous sampling strata 
or landscape units using fuzzy c-means (FCM) clustering algorithms 
incorporated in the ‘fanny’ function of ‘cluster’ package in R (Pal et al., 
2005). In the FCM algorithm, two parameters, namely cluster number 
and fuzzy parameter were set to be 34, and 2, respectively. Generally 
speaking, cluster number should be far less than the number of cluster 
samples, and ensure that it is at least>1. The fuzzy parameter controls 
the flexibility of the algorithm and is used to define the fuzziness of the 

Fig. 1. Location of study area. (a) sampling sites overlaid on a 90-m resolution digital elevation model; (b) topographic wetness index (TWI) map; (c) mean annual 
temperature (MAT) map; (d) mean annual precipitation (MAP).map; and (e) population map. 
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whole data set. It is generally 2 by default. In this study, first initialize 
the membership matrix to calculate the cluster center or initialize the 
cluster center to iteratively calculate the value function. When it is less 
than a minimum or the difference between the previous and subsequent 
times is less than a minimum, stop updating the membership matrix, and 
finally the clustering result is determined to be 34. The FCM algorithms 
identified 34 clusters, landscape units hereafter, covering the study aera, 
and its map was converted into a raster of 90 m × 90 m grid resolution in 
ArcGIS. In each landscape unit, 5–8 sampling sites were randomly 
selected considering landscape position (peak, ridge, valley, and saddle) 
in the landscape making a total of 196 sampling points across the study 
area. The geographical coordinates of each sampling point were recor-
ded by a handheld global positioning system. Soil sample at each sam-
pling point was collected from the topsoil depth (0–30 cm), litters were 
removed if present, and the samples were dried and ground before 
sieving to obtain a fine earth fraction. The SOC content in the samples 
was determined by dry combustion method using a Vario EL III 
elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Ger-
many) in the Analysis and Testing Center of Shenyang Agricultural 
University, Shenyang, China. 

2.3. Environmental variables 

Twelve environmental variables representing anthropogenic, 
topography, climate, and biology, as described below, were used as 
predictors of SOC in the study area. Environmental variables were 
collected from different sources, and were converted to a raster of 90 m 
× 90 m resolution using nearest neighborhood method in ArcGIS 
(Manap et al., 2013). 

2.3.1. Anthropogenic variables 
Anthropogenic variables are human-induced or human-mediated 

variables that directly or indirectly impact SOC variations in agro-
ecosystems; cultivation history or land reclamation period is one of the 
prime examples, among others (Wang et al 2019, Wang et al., 2020, 
Adhikari and Hartemink, 2017). Anthropogenic warming is found to be 
directly related to microbial-mediated SOC losses (García-Palacios et al., 
2021), while temperature dependency of soil organic matter decompo-
sition and its effect on SOC storage has long been studied (Kirschbaum, 
1995). Further, impacts of increased population and urban expansion on 
carbon pool and biodiversity (Seto et al, 2012), and human-induced land 
use change has resulted in substantial losses of carbon from soils globally 
(Sanderman et al., 2017). In this study, we considered five anthropo-
genic variables namely, population (POP), gross domestic product 
(GDP), distance to the socioeconomic center or hotspots (DSE), distance 
to roads (DR), and reclamation period (PER) as SOC predictors. These 
specific variables reflect anthropogenic activities and were selected to 
reflect the driving forces of SOC content and distribution in agro-
ecosystems. The GDP is one of the important indicators of socio- 
economic development, and is a key to regional planning and re-
sources management (Sokka et al., 2009). The POP, and GDP were 
spatialized to replace the traditional administrative statistical unit with 
spatial statistical unit (Vasenev et al., 2018), which brings great con-
venience for data sharing, and spatial analysis among multiple fields 
(Liu et al., 2005; Ling et al., 2006; Wang et al., 2020a). Firstly, 1-km grid 
data set of GDP, and POP were derived from the national statistical data. 
Using the multi-factor weight distribution method (Ling et al., 2006), 
the GDP, and POP data with the administrative region as the basic sta-
tistical unit were distributed to the grid unit, so as to realize the spati-
alization of GDP, and POP. Land use type, night light intensity, 
residential density and other factors closely related to anthropogenic 
economic activities were comprehensively considered during 
spatialization. 

The POP and GDP variables attributed to the grassroots census only 
stayed at county level, which affected the accuracy of mapping. There-
fore, the nearest distance from the field to the road, and to the economic 

center were considered as anthropogenic factors because the roads and 
economic center were the most active area of human influence. Detailed 
steps to generate these data are shown in Liu et al. (2006). Land use type, 
night brightness, residential density, socioeconomic center, and road 
network information were downloaded from the Institute of Geographic 
Sciences, Resource and Environment Cloud Data Platform, China 
(http://www.resdc.cn/) and were rasterized to a 1-km grid in ArcGIS. 
The variable PER reflects agricultural impact on agroecosystem and the 
data were obtained from Wang et al. (2019). PER was derived from the 
data of 300 years of farming or reclamation period following a factor 
correction and a human-land relationship test method. Seven PERs were 
identified-0–10 years, 10–30 years, 30–70 years, 70–120 years, 
120–200 years, 200–300 years, and>300 years. 

2.3.2. Topographic variables 
Topography is one of the five soil forming factors and has been 

widely used in the spatial prediction of SOC (Yimer et al., 2006, Adhikari 
et al, 2014, Wang et al., 2016). In this study, we selected four topo-
graphic variables – elevation (ELE), slope gradient (SG), slope aspect 
(SA), and topographic wetness index (TWI), which were derived from 
the U.S. Geological Survey’s 90-m digital elevation model (DEM). The 
ELE, SG, and SA were derived in ArcGIS software and TWI in System for 
Automated Geoscientific Analyses (Conrad et al., 2015) 

2.3.3. Climatic variables 
Climatic conditions affect input, decomposition, and transformation 

of C in soils (Jobbágy and Jackson, 2000), thus affecting overall SOC 
distribution. In this study, traditional climate variables like mean annual 
precipitation (MAP), and mean annual temperature (MAT) over thirty 
year period (1982–2010) were obtained from China Meteorological 
Data Service Center (http://data.cma.cn/en). The raster data with 1-km 
grid were generated by kriging interpolation using 673 weather stations 
across China. The kriged layer was then resampled to 90-m grid by using 
the nearest neighbor method. 

2.3.4. Biological variable 
For the biological variable, we used Normalized Difference Vegeta-

tion Index (NDVI) which is one of the mostly used biological variables as 
SOC predictor. NDVI reflects vegetation growth, and plant nutrition 
information (Wang et al., 2018; Wang et al., 2020b). A negative value 
indicates that the ground is either covered by clouds, water, or snow; 
0 indicating rock or bare soil; and a positive value indicating vegetation 
coverage which increases with increasing chlorophyll content. We used 
Landsat-7 band 3 (0.63–0.69 μm) and band 4 (0.78–0.90 μm) repre-
senting vegetation growth and coverage to calculate the NDVI as 
follows: 

NDVI = (band 4 − band 3)/(band 4+ band 3) (1) 

Landsat-7 image was downloaded from the Resource and Environ-
ment Science and Data Center from July to September 2013 covering the 
study area with the cloud cover < 10%. The images were atmospheri-
cally corrected using the Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypercubes atmospheric correction method (Perkins et al., 
2005) in ENVI 5.1 software and were resampled to a grid resolution of 
90-m by using the nearest neighbor method. 

2.4. Prediction model and uncertainty 

We selected Boosted Regression trees (BRT) as a SOC prediction 
model. The BRT model as proposed by Friedman et al. (2000) is similar 
to other boosting models in that multiple models are trained and com-
bined for prediction to boost model performance. The model consisted of 
two algorithms: regression trees and gradient boosting (Elith et al., 
2008). The regression trees applies a set of predictive variables to 
analyze the response variable, and uses binary segmentation to fit the 
simple model to each split. The boosting algorithm uses the iterative 

S. Wang et al.                                                                                                                                                                                                                                   

http://www.resdc.cn/
http://data.cma.cn/en


Catena 210 (2022) 105897

4

method to develop the final model, by gradually adding a tree to the 
model. BRT relied on random gradient propulsion through numerical 
optimization and regularization for more accurate and faster calcula-
tions (Pouteau et al., 2011). Compared with other data mining methods, 
BRT model had higher prediction accuracy and good interpretability 
(Ottoy et al., 2017). 

We used “gbm.step” in ‘dismo’ R package (https://cran.r-project. 
org/web/packages/dismo/dismo.pdf) (Hijmans et al., 2013) to build 
the model in R language environment (R Development Core Team 
2013). In the BRT model, four model parameters need to be set: Learning 
Rate (LR), Tree Complexity (TC), Bag Fraction (BF) and Number of trees 
(NT). The LR expresses the contribution made by each tree in the final 
fitting result (Pouteau et al., 2011), TC is the complexity of the tree, 
which is the maximum interaction level between predictive variables 
(Wang et al., 2018), BF represents the proportion of data used in the 
dataset (the more data the model used, the less random it is) (Elith et al., 
2008). Although the BRT model could be used to avoid overfitting by 
expanding the model‘s operations, it was still necessary to set NT which 
can be determined based on the combination of LR, and TC (Wang et al., 
2020a). A 10-fold cross-validation was used to optimize model param-
eter settings and to obtain the best predictive performance of the model. 
The final optimal values of LR, TC, BF, and NT were 0.025, 12, 0.60, and 
2000, respectively. The model was then applied to predict .SOC distri-
bution through study area. 

Three different BRT models each with a specific group of predictors 
were developed for SOC predictions in the study area. The first model 
used anthropogenic variables only (MA), the second model used only 
topography, and climate variables (MB), and the third model used all 
variables, i.e., topography, climate, and anthropogenic variables (MC). 
For each model, a data matrix of 196 SOC measurements (log-trans-
ferred SOC) in rows and corresponding predictors values at measure-
ment locations in columns was constructed. The model was built on 
these matrices and was iterated 100 times generating 100 maps; the 
average of 100 predictions was then considered as the final predicted 
map of SOC distribution. The log-transferred SOC values were back- 
transferred to original units for map display. 

The uncertainty related to BRT prediction was derived as the stan-
dard deviation (SD) of 100 iterations of each model, and the map rep-
resented an indicator of SOC prediction uncertainty. The relative 
importance (RI) of variables were measured according to the number of 
times a variable was selected for modeling and weighted by the square 
improvement to each split and averaged across all trees (Wang et al., 
2020a). The RI of each variable was then scaled so that the sum was 
added as a percentage to 100. The higher the percentage of the variable, 
the stronger the RI of the variable to the response. 

2.5. Model evaluation 

A 10-fold cross-validation technique was applied to evaluate the BRT 
model through multiple iterations using environmental variables, and 
measured SOC content at sampling locations. The prediction perfor-
mance of each BRT model was tested by comparing the average pre-
dicted SOC value with the measured value with validation indices mean 
absolute error (MAE), root mean of squared error (RMSE), coefficient of 
determination (R2), and Lin‘s concordance correlation coefficient 
(LCCC) (Lin, 1989) which were calculated as follows: 

MAE =
1
n

∑n

i=1
|Xi − Yi| (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Xi − Yi)2

√

(3)  

R2 =

∑n
i=1(Xi − Y)2

∑n
i=1(Yi − Y)2

(4)  

LUCC =
2rσXσY

σ2
X + σ2

Y + (X + Y)2
(5) 

where Xi and Yi stands for predicted values and observed values, 
respectively; n is the number of samples, X and Y are the mean predicted 
and observed values ; r refers to the Person correlation coefficient be-
tween the predicted values and observed values , σX and σY correspond 
to the standard deviation of the prediction set and observation set. 

3. Results 

3.1. Descriptive statistics 

Statistical description of measured SOC content, and environmental 
variables are shown in Table 1. These statistics are restricted to the 
sampling sites (196 locations). Measured SOC content ranged from 6.30 
g kg− 1 to 67.30 g kg− 1 and its average value was 24.60 g kg− 1. SOC data 
were positively skewed with a coefficient of variation of 43.9%. 

The Pearson correlation coefficient between log-transformed SOC 
content and environmental variables is shown in Table 2. The SOC had 
positive correlations with ELE, SG, TWI, MAP, NDVI, and DR, with the 
correlation coefficients of 0.39, 0.29, 0.33, 0.36, 0.51 and 0.32, 
respectively. However, SOC was negatively correlated with MAT (r =
-0.36), POP (r = -0.43), and anthropogenic variables such as GDP (r =
-0.52), DSE (r = -0.34), and PER (r = -0.39), respectively. Measured SOC 
had a high correlation with all anthropogenic variables in our study 
area. It could be attributed to the fact that northeast China was China’s 
main commercial grain production base, accounting for 20% of the 
country’s total grain output. In order to ensure national food security, 
the Chinese government has been investing a lot to promote grain pro-
duction every year. Moreover, the protective tillage and black land 
protection policies carried out in recent years had made the cultivated 
land more strongly affected by human interference. 

3.2. Model performance 

Summary statistics of the performance of MA (only anthropogenic 
variables), MB (only topography and climate variables), and MC 
(topography, climate, and anthropogenic variables) models to predict 
SOC content based on 100 iterations of the BRT model is showed in 
Table 3 and Fig. 2. The validation statistics indicated that MC had the 
best prediction performance, because it had the highest R2 (0.74) and 
LUCC (0.78), and the lowest MAE (0.83) and RMSE (1.21), and it was 
followed by MA, and MB models. The MB model explained 53% of the 
SOC spatial variation in the region while the MC and MA models could 
explain 78%, and 42% of the variation. Results showed that adding 
anthropogenic variables significantly improved the prediction perfor-
mance of the MC model. This suggested that SOC distribution in 
Northeast agroecosystems in China is greatly influenced by anthropo-
genic factors, and combining it with topographic, and climatic variables 
could improve SOC prediction performance. Overall, all three models 
showed a good performance in predicting SOC content, among which 
MC model with the full set of variables had the best prediction 
performance. 

To further verify the importance of incorporating anthropogenic 
variables in SOC predictions, we generated a scatter plot between 
observed and predicted SOC values from the three BRT model (Fig. 3). 
The predicted value of MC model was closer to observed SOC, and its 
stability and accuracy (Table 3) were also higher, suggesting that the 
inclusion of anthropogenic variables greatly improved SOC predictions 
in northeastern agroecosystem in China. 

Fig. 4 shows uncertainty map of MA, MB, and MC models, for which 
the corresponding mean values were 3.2 g kg− 1, 2.1 g kg− 1 and 1.3 g 
kg− 1, respectively. Although all the three BRT models performed well, 
adding anthropogenic factors as SOC predictors reduced mean uncer-
tainty of MC model compared to MB model. 

S. Wang et al.                                                                                                                                                                                                                                   
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3.3. Relative importance of environment variables 

Three BRT models are iterated 100 times, and the average value of RI 
of environment variables in predicting SOC of each model is obtained 
respectively. The RI of each variable was then scaled so that the sum was 
added as a percentage to 100. The RI values of environmental variables 
in predicting SOC in the study area is displayed in Fig. 5. The variables 

showed different levels of importance in predicting SOC content of 
topsoil agroecosystem in Northeast China. Anthropogenic variables had 
the largest RI (50.6%), followed by topographic (23.02%), and climatic 
variables (20.07%). The biological variables showed the least impor-
tance (6.31%). Among the anthropogenic variables, PER had a highest 
influence (RI > 15%) and DSE had the lowest (RI 5.3%) of all. POP and 
GDP shared a comparable influence of about 11% RI. 

3.4. Spatial distribution of SOC content 

The predicted maps of SOC content in the study area from MA, MB, 
and MC models are shown in Fig. 6. The average SOC contents in the 
study area based on MA, MB, and MC models were 26.2 g kg− 1, 25.3 g 
kg− 1, and 25.8 g kg− 1, respectively. Overall, all three maps showed 
similar SOC distribution pattern in the study area, a gradually decreased 
SOC from northeast to southwest. To further demonstrate the difference 
between MB and MC model, we generated a difference map of SOC 
content predicted by MB, and MC models (Fig. 7). Although the average 
SOC difference between the maps was very low (0.6 g kg -1), the pre-
dicted SOC by MB model in most of the study area was lower than that of 
MC model. 

4. Discussion 

4.1. Anthropogenic variables and SOC 

Our results showed that adding anthropogenic variables in the SOC 
prediction model could improve model performance (Table 3), and re-
sults are consistent with previous findings (Wang et al., 2019; Vasenev 

Table 1 
Summary statistics of measured SOC content, and environmental variables at 196 sampling sites.  

Property Unit Min. Mean Max. SD Skewness Kurtosis 

SOC g kg− 1  6.30  24.60  67.30  10.80  1.20  1.90 
LnSOC g kg− 1  1.84  3.13  4.21  0.67  0.23  2.14 
ELE m  0.80  186.70  652.70  129.20  1.10  1.50 
SA degree  0.00  163.40  345.80  102.50  0.30  − 1.30 
SG degree  0.00  1.80  17.50  2.20  1.40  1.70 
TWI index  6.60  9.70  12.40  1.40  − 0.30  − 0.60 
MAP mm  410.20  594.90  1093.70  125.31  1.50  2.70 
MAT degree Celsius  − 0.50  5.70  10.80  2.60  − 0.10  − 0.70 
NDVI index  0.17  0.40  0.56  0.09  − 0.17  0.27 
POP Person / km2  13.60  155.70  905.90  124.50  − 1.30  2.40 
GDP 104 yuan / km2  35.00  747.20  12055.00  1179.50  − 1.60  3.55 
DSE km  0.70  5.70  31.30  4.70  1.70  2.30 
DR km  0.10  0.90  3.40  0.70  0.50  1.10 

Note: ELE, elevation; SA, slope aspect; SG, slope gradient; TWI, topographic wetness index; MAP, mean annual precipitation; MAT, mean annual temperature; NDVI, 
Normalized Difference Vegetation Index; POP, population , GDP, gross domestic product; DSE, distance to the socioeconomic center or hotspots; DR, and distance to 
roads. 

Table 2 
Pearson correlation coefficients between SOC content and environmental variables based on 196 samples.  

Property lnSOC ELE SA SG TWI MAP MAT NDVI POP GDP DSE DR 

ELE  0.39            
SA  − 0.17  0.09           
SG  0.29  0.37  0.17          
TWI  0.33  − 0.46  − 0.33 − 0.62         
MAP  0.47  − 0.32  0.13 0.17  0.06        
MAT  − 0.36  0.38  − 0.14 0.22  0.10  0.25       
NDVI  0.41  0.23  − 0.06 0.21  0.21  0.37 − 0.17      
POP  − 0.43  − 0.23  − 0.24 − 0.16  − 0.37  0.23 0.18 − 0.27     
GDP  − 0.52  − 0.07  − 0.09 − 0.18  0.13  0.26 0.13 − 0.13  0.43    
DSE  − 0.34  − 0.19  − 0.11 − 0.14*  0.11  0.07 0.08 0.11  − 0.46 − 0.33   
DR  0.32  0.18  − 0.14 0.05  − 0.16  − 0.09 0.11 − 0.16  − 0.31 − 0.29  0.35  
PER  − 0.39  − 0.21  0.23 − 0.13  0.06  0.38 0.27 0.17  0.34 − 0.16  0.21  0.32 

Note: ELE, elevation; SA, slope aspect; SG, slope gradient; TWI, topographic wetness index; MAP, mean annual precipitation; MAT, mean annual temperature; NDVI, 
Normalized Difference Vegetation Index; POP, population, GDP, gross domestic product; DSE, distance to the socioeconomic center or hotspots; DR, and distance to 
roads; and PER, Reclamation period. 

Table 3 
Evaluation of prediction performances of MA (only anthropogenic variables), 
MB (only topography and climate variables), and MC (topography, climate, and 
anthropogenic variables) models for SOC content using BRT model with 100 
iterations based on 196 samples.  

Model Index Min. 1st 
Quartile 

Median Mean 3rd 
Quartile 

Max. 

MA MAE  1.36  1.38  1.39  1.39  1.41  1.43 
RMSE  1.64  1.65  1.67  1.67  1.69  1.73 
R2  0.39  0.40  0.42  0.42  0.44  0.45 
LUCC  0.60  0.61  0.63  0.64  0.64  0.65 

MB MAE  1.28  1.29  1.30  1.30  1.34  1.37 
RMSE  1.59  1.62  1.65  1.65  1.67  1.68 
R2  0.49  0.50  0.51  0.52  0.54  0.55 
LUCC  0.69  0.70  0.72  0.72  0.74  0.74 

MC MAE  0.83  0.86  0.92  0.92  0.95  0.96 
RMSE  1.21  1.24  1.25  1.25  1.26  1.28 
R2  0.74  0.76  0.76  0.78  0.79  0.81 
LUCC  0.78  0.81  0.88  0.88  0.89  0.91 

Note: MAE, absolute prediction error; RMSE, root mean square error; R2, co-
efficient of determination; and LCCC, Lin’s concordance correlation coefficient. 
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Fig. 2. RMSE distributions from BRT in predicting SOC based on 100 iterations. (a) MA model (only anthropogenic variables); (b) MB model (only topography and 
climate variables); (c) MC model (included all topography, climate, and anthropogenic variables). 

Fig. 3. Scatter plot between the observed SOC with its predicted values using the BRT model based on the 196 sampling point. (a) MA model (only anthropogenic 
variables); (b) MB model (only topography and climate variables); (c) MC model (included all topography, climate, and anthropogenic variables). 
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Fig. 4. Uncertainty map of SOC prediction carbon (g kg− 1). (a) MA model (only anthropogenic variables); (b) MB model (only topography and climate variables); (c) 
MC model (included all topography, climate, and anthropogenic variables); (d), (e) and (f) represent zoomed in areas in map (a), (b), and map (c), respectively. The 
areas in white are where no predictions were made. 
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et al., 2018; Wang et al., 2020a). Wang et al. (2020a) found anthropo-
genic and related variables as important predictors of SOC affecting the 
SOC distribution in rapidly urbanized areas in Northeast China. It was 
also pointed out that there was a strong and a negative correlation be-
tween anthropogenic variables (POP and GDP) and SOC content in the 
topsoil. Increasing POP and economic development have led to an 
exponential increase in land use changes (Liu et al., 2016; Stumpf et al., 
2018), resulting in large changes in soil carbon stocks, impacting the 
global climate. Wang et al. (2019) to include anthropogenic variables 
(POP and GDP) as potential SOC predictors to map SOC in areas with 
strong anthropogenic disturbance. Present study also reported the 
similar results. Few other studies, for example, e.g., Vasenev et al. 
(2014) and Wang et al. (2019) have also shown that anthropogenic 
related variables could impact SOC distribution in agroecosystem. 
Furthermore, variables like PER, GDP, and POP could reflect the input 
and cultivation level to a certain extent, which had an indirect impact on 
the SOC content in the topsoil (Vasenev et al., 2014, 2018; Wang et al., 
2020a). 

We found PER, GDP and POP as the most effective variables affecting 
SOC distribution the study area, and all variables represent anthropo-
genic influence in agroecosystems. This finding was consistent with 
Wang et al. (2019) who found PER as a key variable of SOC distribution 
in Norther eastern Chinese agroecosystems. Vasenev et al. (2014) 
introduced GDP, POP, DSE, and DR variables to predict topsoil SOC in a 
rapidly urbanized area in Russia, and concluded that these factors could 
significantly improve the prediction accuracy. These indices could be 

used as proxy indicators related to human-induced processes reflecting 
the anthropogenic disturbance on topsoil SOC levels in agroecosystem. 
In the cultivated soil, the effects of tillage and other agricultural activ-
ities would affect soil hydrology and microbiology, resulting in the 
destruction of physical protection layer and the exposure of organic 
matter to decomposition (Stoécio et al., 2019; Topa et al., 2021). The 
increase of soil microbial activity, soil respiration, organic carbon 
decomposition and mineralization rates could lead to the decrease of soil 
organic matter content in agricultural soils. In addition, soil erosion 
could be an important cause to SOC depletion due to mechanical 
removal. Road construction could often cause important soil erosion 
phenomena to occur in neighboring areas (Ren et al., 2018). This study 
showed that combining anthropogenic variables together with other 
environmental variables as SOC predictors significantly improves SOC 
prediction and we recommend considering such variables in future SOC 
modeling studies, especially in areas with a long history of anthropo-
genic influence. 

4.2. Spatial variation of SOC and associated predictors 

The spatial variation of SOC content predicted by three BRT models 
with different combination of environmental variables showed a com-
parable spatial distribution pattern or trend (Fig. 6). In general, SOC 
showed a decreasing trend from northeast to southwest, with the highest 
SOC content in the north of the study area, which was attributed to the 
black soil as the main soil type. It could be attributed to the high latitude 

Fig. 5. Relative importance (RI) of SOC predictors in (a) MA model (only anthropogenic variables), (b) MB model (only topography and climate variables), and (c) 
MC model (included all topography, climate, and anthropogenic variables). 
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area in this region, so the long and cold winter had inhibited the soil 
microbial activity leading to the slow decomposition of organic matter 
and the accumulation of a large amount of humus in the upper part of 
the soil forming a deep black humus layer. However, with the increase of 
cultivated land reclamation time and human activities, the rate of SOC 
loss was accelerating rapidly in this area, which had been confirmed by 
many previous studies (Liu et al., 2006; Huang et al., 2010; Wang et al., 
2019). The SOC content in southwest area was lower than northeast 
because it had the longest cultivated land reclamation period (>300 
yrs). This area constitute the traditional agricultural area in China, 
which was deeply affected by human influence. 

In the MC model (all variable prediction models), PER was the most 
important variable with a relative importance of 15.3%. This finding 
was similar to the previous research results of Vasenev et al. (2018), 
Wang et al. (2019), and Wang et al., (2020a) who reported PER as one of 
the main variables affecting SOC change in cultivated land. Overall, PER 

had some “positive” effects on topsoil SOC in the short term (Zhang 
et al., 2016), but in the long-term or with longer reclamation period, a 
negative impact on SOC could be expected, which increased minerali-
zation rate (and related carbon dioxide emissions) (Vasenev et al., 2014; 
Li et al., 2018; Wang et al., 2019; Wang et al., 2020b). Therefore, the 
positive or negative impact of PER on SOC should be evaluated ac-
cording to the PER period (short-term, medium-term, or long-term). 

Temperature and precipitation were considered to be the key climate 
variables affecting SOC spatial variability (Baldock et al., 2012;, Adhi-
kari et al., 2020), and similar findings were obtained in this study. In the 
MC model, MAT had a higher RI than MAP indicating a bigger role of 
MAT in SOC distribution in Northeast Chinese agroecosystems. Tem-
perature and precipitation affected SOC content mainly by affecting 
crop productivity, and litter decomposition rate (Jobbágy and Jackson, 
2000; Lal, 2004; Reyes Rojas et al., 2018). Topographic variables were 
widely used in predicting SOC research, especially in the area with large 

Fig. 6. Predicted maps of soil organic carbon (g kg− 1) distribution in the study area. Each map is an average of 100 predictions derived from 100 iteration of the BRT 
model. (a) MA model only anthropogenic variables; (b) MB model only topography and climate variables; (c) MC model included all predictors (topography, climate, 
and anthropogenic variables); (d), (e) and (f) represent zoomed in areas in map (a), (b), and map (c), respectively. The areas in white are where no predictions 
were made. 
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topographic variation (Chaminade, 2005; Yimer et al., 2006; Conforti 
et al., 2016; Guo et al., 2019; Fissore et al., 2017; Adhikari et al., 2020). 
Among all topographic variables, elevation was the most important 
variable, followed by TWI, SG, and SA. Elevation had been proved to be 
the most effective covariate of SOC in previous studies (e.g., Jobbágy 
and Jackson, 2000, Chaminade, 2005; Yimer et al., 2006; Wang et al., 
2019; Wang et al., 2020a; Zhang et al., 2021). Elevation was closely 
related to the spatial distribution pattern of SOC, as shown in the Figs. 1, 
and 6. In the small terrain of montane ecosystems, elevation affected 
microclimate, thus affecting SOC distribution (Wang et al., 2016). 

4.3. Model uncertainty 

Although most uncertainties associated with SOC prediction and 
mapping were accounted for, there were other sources of uncertainties 
as well, that were not evaluated. For example, the reclamation period 
data was sorted out from the historical data, and a unified value was 
assigned to the county as the smallest unit, which could influence model 
accuracy. The GDP, and POP data used in this study were obtained from 
statistical yearbooks but the way they were primarily collected might 
not be error free. Same could be true with climatic, topographic, and 
biological variables. Other possible error sources could be associated 
with the clustering of environmental variables into sampling units, soil 
sampling strategy, and GIS operations itself. However, these sources of 
error are inevitable in DSM, and we did not assess such errors as it was 
beyond the scope of this study. 

5. Conclusions 

Three BRT models were used to predict SOC spatial distribution in 
topsoil (0–30 cm) of agroecosystem in Northeast China using a wide 

range of environmental variables as SOC predictors. The MC model that 
included anthropogenic variables as SOC predictors greatly improved 
the prediction performance compared to the MA and MB models that 
excluded such variables. MC model had a higher R2, and LCCC, and 
lower MAE, and RMSE compared to MA and MB. The average SOC 
content predicted by MC model was 25.8 g kg− 1, and the model could 
explain 78% variations in SOC measurements. Among the anthropo-
genic variables, PER, GDP, and POP were the most important environ-
mental variables affecting SOC distribution in the study area. These 
variables directly reflect SOC footprints of anthropogenic influence in 
soils. Therefore, future SOC mapping research, especially in the areas 
with rapid economic development, anthropogenic variables should be 
considered as potential SOC predictors. We believe that our SOC content 
map will have a positive impact on land use decision-making and agri-
cultural management in the study region. 
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